On the Veldkamp Space of GQ(4, 2)

نویسنده

  • Metod Saniga
چکیده

The Veldkamp space, in the sense of Buekenhout and Cohen, of the generalized quadrangle GQ(4, 2) is shown not to be a (partial) linear space by simply giving several examples of Veldkamp lines (V-lines) having two or even three Veldkamp points (V-points) in common. Alongside the ordinary V-lines of size five, one also finds V-lines of cardinality three and two. There, however, exists a subspace of the Veldkamp space isomorphic to PG(3, 4) having 45 perps and 40 plane ovoids as its 85 V-points, with its 357 V-lines being of four distinct types. A V-line of the first type consists of five perps on a common line (altogether 27 of them), the second type features three perps and two ovoids sharing a tricentric triad (240 members), whilst the third and fourth type each comprises a perp and four ovoids in the rosette centered at the (common) center of the perp (90). It is also pointed out that 160 non-plane ovoids (tripods) fall into two distinct orbits — of sizes 40 and 120 — with respect to the stabilizer group of a copy of GQ(2, 2); a tripod of the first/second orbit sharing with the GQ(2, 2) a tricentric/unicentric triad, respectively. Finally, three remarkable subconfigurations of V-lines represented by fans of ovoids through a fixed ovoid are examined in some detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 3 . 07 15 v 1 [ m at h - ph ] 4 M ar 2 00 9 The Veldkamp Space of GQ ( 2 , 4 )

It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point’s perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in parti...

متن کامل

ar X iv : 0 90 3 . 07 15 v 2 [ m at h - ph ] 6 J ul 2 00 9 The Veldkamp Space of GQ ( 2 , 4 )

It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point’s perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in parti...

متن کامل

A Combinatorial Grassmannian Representation of the Magic Three-Qubit Veldkamp Line

It is demonstrated that the magic three-qubit Veldkamp line occurs naturally within the Veldkamp space of a combinatorial Grassmannian of type G2(7), V(G2(7)). The lines of the ambient symplectic polar space are those lines of V(G2(7)) whose cores feature an odd number of points of G2(7). After introducing the basic properties of three different types of points and seven distinct types of lines...

متن کامل

The Veldkamp Space of GQ(2,4)

It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomorphic to PG(5,2). Since the GQ(2,4) features only two kinds of geometric hyperplanes, namely point’s perp-sets and GQ(2,2)s, the 63 points of PG(5,2) split into two families; 27 being represented by perp-sets and 36 by GQ(2,2)s. The 651 lines of PG(5,2) are found to fall into four distinct classes: in parti...

متن کامل

A Classification of the Veldkamp Lines of the Near Hexagon L 3 × GQ ( 2 , 2 )

Using a standard technique sometimes (inaccurately) known as Burnside’s Lemma, it is shown that the Veldkamp space of the near hexagon L3×GQ(2, 2) features 158 different types of lines. We also give an explicit description of each type of a line by listing the types of the three geometric hyperplanes it consists of and describing the properties of its core set, that is the subset of points of L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010